
Preserving REST-ful Visibility Of Rich Web
Applications With Generalized Hypermedia
Controls

CARSON GROSS AND MATTHEW REVELLE
HyperMedia Research Group @ Montana State University

This research investigates how the visibility benefits of the REST architectural style can be pre-

served through the use of generalized hypermedia controls without sacrificing user experience in
web applications. JavaScript, an implementation of the code-on-demand constraint of REST,

has been used to enable rich user experiences on the World Wide Web (WWW) but its use has

increasingly become detrimental to visibility in modern web applications. We review the bene-
fits provided by visibility to the WWW and the tension between visibility and code-on-demand.

The concept of generalized hypermedia controls is presented and we demonstrate how generalized

hypermedia controls preserve visibility while enabling a rich user experience in real-world web
applications.

1. INTRODUCTION

A benefit of the REST [Fielding and Taylor 2000] network architecture of the World Wide
Web (WWW) is visibility, in which the networking semantics of components are visible
[Jacobs and Walsh 2004] to intermediaries [Barrett and Maglio 1998], allowing these in-
termediaries to add value to the overall system with features such as caching [Davison
2001] [Erman et al. 2009] and preloading [Yeo et al. 2020]. As web-based applications
have become increasingly sophisticated the visibility of these applications has diminished,
with their network behavior being specified in opaque code-on-demand [Carzaniga et al.
2007], that is JavaScript-based logic. Generalized hypermedia controls [Gross et al. 2024]
offer a mechanism for providing the advanced user experiences expected of modern web
applications while retaining the visibility benefits inherent to the REST architectural style.

In his thesis defining the REST network architecture, Fielding states:

[Architectural styles] can also influence the visibility of interactions within a
network-based application by restricting interfaces via generality or providing
access to monitoring. Visibility in this case refers to the ability of a component
to monitor or mediate the interaction between two other components.

One of the primary mechanisms by which REST improves visibility is requiring the use
of hypermedia. Hypermedia encodes network interactions directly in responses, allowing

SIGWEB Newsletter Autumn 2024



2 · Carson Gross et al.

intermediate components in a REST-ful system to ”see” these interactions and potentially
act on or modify them.

This advantage is not only restricted to intermediate software components. Human users
are also able to take advantage of this visibility via the ”View Source” [Doctrow 2024]
feature of web browsers, which allows users to inspect the hypermedia source of web
pages and to understand how they operate.

This user-facing visibility is a key component of the openness [Davis et al. 1993] and
success of the WWW as a distributed system: it has allowed users to learn from implemen-
tations they encounter as they interact with web pages.

(a) Source code from the Google home page in 2000. [Google LLC 2000].

(b) Source code from the Google home page in 2023. [Google LLC 2023].

SIGWEB Newsletter Autumn 2024



Preserving Visibility With Generalized Hypermedia Controls · 3

1.1 The Decline of Visibility On The Web

There has been a marked decline in visibility in web applications since Fielding’s thesis.
This is a trend that has accelerated with the rise of what are known today as Single Page
Application (SPA) web applications.

Single Page Applications use a single web page to bootstrap JavaScript-based—rather
than hypermedia-based—web applications. These web applications typically communi-
cate with servers via a plain data format such as JavaScript Object Notation (JSON)1 rather
than via a hypermedia format, thus abandoning the REST architectural style [Feng et al.
2009].

The reduction in the visibility that has occurred due to this shift can be seen in dramatic
fashion on one of the most popular websites in the world: the Google search engine. The
source of the Google home page in the year 2000 is shown in Figure 1a, retrieved from
the Wayback Machine2. Note in particular that the network actions that the page offers are
clearly visible in the source hypermedia, in particular via the action attribute found on
the form element, which specifies what network endpoint the form will submit its request
to.

Contrast this visibility with a small portion of the Google home page source in the year
2023, shown in Figure 1b. Google has moved from what was a hypermedia-based approach
for their home page to a JavaScript-based approach. They now communicate with their
remote servers using data formats rather than hypermedia.

This change was done for good reasons: the user experience of the Google search page in
2023 is more advanced than the 2000 version. However, it is apparent this advance in user
experience has come at the cost of visibility.

2. BACKGROUND

The REST architectural style consists of a series of constraints that should be adhered
to for a particular distributed system to be considered REST-ful. The two most critical
constraints of REST with respect to visibility are: the uniform interface constraint and the
optional code-on-demand constraint.

2.1 The Uniform Interface

The uniform interface constraint is of particular importance in the REST architectural style.
Fielding [Fielding and Taylor 2000] states:

The central feature that distinguishes the REST architectural style from other
network-based styles is its emphasis on a uniform interface between compo-
nents.

1Confusingly, JSON-based APIs are often referred to as ”REST” APIs today in both industry and academic
settings. This confusion of language has lead to significant misunderstandings around the REST network archi-
tecture.
2https://web.archive.org

SIGWEB Newsletter Autumn 2024



4 · Carson Gross et al.

This uniform interface constraint is further divided into four additional sub-constraints.
First, the system must use a mechanism for the identification of resources (e.g. URLs). Sec-
ond, the system must perform manipulation of resources through representations. Third,
the system must use self-descriptive messages; and finally, the system must use hypermedia
as the engine of application state (HATEOAS).

Within the uniform interface, these last two sub-constraints—the use of self-describing
messages and hypermedia—are the primary mechanism by which REST achieves its dis-
tinctive visibility. The network interactions are embedded in hypermedia in the form of
hypermedia controls—elements that encode or imply network interactions with remote
systems.

2.2 Code-On-Demand

The code-on-demand constraint of REST is considered optional: it allows, but does not
require, a REST-ful system to support the downloading and execution of code in a client.
This simplifies REST-ful systems by allowing new features to be implemented after system
deployment.

At the time of Fielding’s earlier works the code-on-demand constraint on the WWW was
satisfied by technologies such as Java Applets and JavaScript. Today, JavaScript is the
dominant code-on-demand technology [Worldmetrics.org 2024] on the WWW.

Fielding noted in [Fielding and Taylor 2000] that this optional code-on-demand constraint,
in contrast with the uniform interface, has the potential to harm the visibility benefits of
REST-ful systems:

[Code-on-demand] simplifies clients by reducing the number of features re-
quired to be pre-implemented. Allowing features to be downloaded after de-
ployment improves system extensibility. However, it also reduces visibility,
and thus is only an optional constraint within REST.

As is apparent in the contrast between the Google home pages from 2000 and 2023, Field-
ing was correct in his prediction that the utilization of code-on-demand would indeed re-
duce visibility in REST-ful systems.

3. GENERALIZED HYPERMEDIA CONTROLS

In our recent paper [Gross et al. 2024] we presented a generalization of the concept of
hypermedia controls. Hypermedia controls are elements found embedded in a hypermedia
document that specify network interactions with remote servers and allow users to select
non-linear actions in that document.

The canonical example of a hypermedia control is the hyperlink which, in the standard
implementation, allows a user to click on a text element and ”jump” to another place in the
current document or to another document entirely.

In our paper we review four hypermedia controls found in HTML [Walker 2005]: anchor
elements, form elements, image elements and IFrame elements. We note that in all four
SIGWEB Newsletter Autumn 2024



Preserving Visibility With Generalized Hypermedia Controls · 5

cases we have the following pattern: first, an event triggers an HTTP request of some
method type. The event is user-initiated in the case of anchors and forms, and browser-
initiated in the case of images and IFrames. Next, the hypermedia response to that request
either replaces the current document or is inserted into the existing document in some
manner. We noted that, while anchors (links) and forms often replace the entire document,
images and IFrames instead use a transclusional model, where content is placed within
the existing document rather than replacing it. We also noted that anchors and forms are
capable of this behavior via the target attribute, in conjunction with IFrame elements.

From these observations we derived a functional definition of hypermedia controls:

A hypermedia control is an element that responds to an event trigger by issuing
a type of request to a URL and placing the response at some position within
the user agent’s viewport.

This functional definition then points to a generalization of the concept of hypermedia
controls within a hypermedia format: allow any event to initiate any sort of request on
any element and place the response content anywhere in the document (i.e., generalized
transclusion [Nelson 1995]).

A hypermedia that implements this generalization will increase the expressiveness of the
REST system it participates in, allowing for more interactive patterns to be adopted within
that network architecture.

3.1 An Implementation of Generalized Hypermedia Controls for the Web

We presented multiple implementations of this generalization of hypermedia controls in
real world hypermedia systems in [Gross et al. 2024]. One of the implementations pre-
sented is htmx, which bring this generalization to HTML. htmx allows HTML authors to
define new hypermedia controls in HTML via a set of declarative attributes that closely
follow the existing hypermedia-active attributes.

By increasing the expressiveness of HTML as a hypermedia format within the declarative
framework already established for existing hypermedia controls, htmx makes it possible
to create significantly richer user experiences within the original hypermedia-oriented and
REST-ful network architecture of the web.

UX patterns that can be achieved with htmx include: infinite scroll, loading more content
when a user reaches the bottom of a page; lazy loading of content, allowing a request to be
made for additional content only after the initial page has been loaded; and inline editing,
where a user may edit the details directly within a UI context without requiring a full page
refresh.

3.2 Google Instant Search and Hypermedia Controls

Google introduced ”Instant Search” [Mayer 2010] in 2010. This feature allowed search
results to be displayed to users as they typed, rather than requiring them to submit a form
to perform the search as had previously been needed. This dynamic user interface was not
achievable with any existing HTML infrastructure and thus required the use of JavaScript

SIGWEB Newsletter Autumn 2024



6 · Carson Gross et al.

to implement. It remains the primary feature of the current Google home page that differ-
entiates it’s functionally from its earlier version in the 2000s.

While the increased use of JavaScript on the Google home page has harmed the visibility
of that page in REST terms it has enabled an improved user experience. However, it is
worth considering if the improved user experience can be implemented in a manner that
retains the visibility benefits of a REST-ful, hypermedia-based system.

We are glad to demonstrate that the answer is ”yes”; the additional expressive power of
generalized hypermedia controls can achieve a very similar user experience without losing
visibility.

This can be accomplished with an htmx-powered input element that has been, through
attributes, transformed into a hypermedia control as shown here:

<input type="search"
name="search"
hx-get="/search"
hx-trigger="keyup delay:500ms"
hx-target="#search-results"
hx-swap="innerHTML">

<div id="search-results">
</div>

The ht-get attribute tells htmx that this input element should issue an HTTP GET
request to /search when a triggering event occurs. This attribute converts the input
element from an inert input into a hypermedia control. Note the visibility of the network
interaction present here.

The ht-trigger attribute specifies that the triggering event is a keyup event. This is
followed by a delay modifier that prevents requests from being issued until there is a
500 millisecond pause in the stream of keyup events. This use of a delay is known as
debouncing the event and prevents the control from overloading the remote server with
requests as the user types.

The hx-target attribute specifies the target element into which the response content will
be placed with a CSS selector. In this case the selector, #search-results, specifies
the div tag found immediately following the input element.

Finally, the ht-swap attribute indicates that the response content should replace the inner
HTML of the target element. This could alternatively specify that the response content
replace the element entirely, be appended to the element, etc. These last two attributes
implement generalized transclusion in HTML.

It is important to recognize that the response content in this case is expected to be in a hy-
permedia format. htmx does not replace the standard web model of network exchanges via
hypermedia in favor of a data format like JSON, but rather utilizes the existing hypermedia
infrastructure of the WWW and the browser.

A web developer is able to create an interactive experience that mirrors the Instant Search
functionality introduced by Google with these four htmx attributes. The results of the
SIGWEB Newsletter Autumn 2024



Preserving Visibility With Generalized Hypermedia Controls · 7

search will be displayed in the div element below the input element as a user types.

4. CONCLUSION

In this paper, we identified and described the impact of code-on-demand on visibility in
the REST network architecture. We then presented generalized hypermedia controls as an
alternative technology for achieving modern user interfaces on the web.

We demonstrated that, with htmx, we are able to implement dynamic user interfaces while
retaining the visibility benefits of the REST network architecture. Network interactions
remain visible in the hypermedia, in particular in the hx-get attribute, providing both
intermediate components and end users the ability to inspect and modify these interactions.

The visibility benefits of the REST network architecture of the WWW do not need to be
abandoned due to the interactive deficiencies of HTML. By increasing the expressiveness
of HTML with generalized hypermedia controls we can retain these benefits while provid-
ing the interactive experiences users have come to expect on the modern web.

ACKNOWLEDGMENTS

Many thanks to Mike Amundsen for reviewing this article and suggesting improvements.

REFERENCES

BARRETT, R. AND MAGLIO, P. P. 1998. Intermediaries: New places for producing and manipulating web
content. Computer Networks and ISDN Systems 30, 1-7, 509–518.

CARZANIGA, A., PICCO, G. P., AND VIGNA, G. 2007. Is code still moving around? looking back at a decade
of code mobility. In 29th International Conference on Software Engineering (ICSE’07 Companion). IEEE,
Los Alamitos, CA, 9–20.

DAVIS, H., HALL, W., HEATH, I., HILL, G., AND WILKINS, R. 1993. Towards an integrated information
environment with open hypermedia systems. In Proceedings of the ACM Conference on Hypertext. ECHT
’92. Association for Computing Machinery, New York, NY, USA, 181–190.

DAVISON, B. D. 2001. A web caching primer. IEEE Internet Computing 5, 4, 38–45.
DOCTROW, C. 2024. Hypercard presaged the web’s critical ”#ViewSource” affordance. https://x.com/
doctorow/status/1701934612686196872. Accessed: 2024-10-26.

ERMAN, J., GERBER, A., HAJIAGHAYI, M. T., PEI, D., AND SPATSCHECK, O. 2009. Network-aware forward
caching. In Proceedings of the 18th International Conference on World Wide Web. WWW ’09. Association
for Computing Machinery, New York, NY, USA, 291–300.

FENG, X., SHEN, J., AND FAN, Y. 2009. REST: An alternative to RPC for web services architecture. In 2009
First International Conference on Future Information Networks. IEEE, Institute of Electrical and Electronics
Engineers, New York, NY, USA, 7–10.

FIELDING, R. T. AND TAYLOR, R. N. 2000. Architectural styles and the design of network-based software
architectures. Ph.D. thesis, University of California, Irvine. AAI9980887.

GOOGLE LLC. 2000. Google homepage source code (2000). https://web.archive.org/web/
20000229040250/http://www.google.com/. Accessed: 2024-10-26.

GOOGLE LLC. 2023. Google homepage source code (2023). https://web.archive.org/web/
20231211000742/https://www.google.com/. Accessed: 2024-10-26.

GROSS, C., SHAFFER, D., AND REVELLE, M. 2024. Hypermedia controls: Feral to formal. In Proceedings
of the 35th ACM Conference on Hypertext and Social Media. HT ’24. Association for Computing Machinery,
New York, NY, USA, 52–64.

JACOBS, I. AND WALSH, N. 2004. Architecture of the world wide web, volume one - W3C recommendation.
Tech. rep., The World Wide Web Consortium. Accessed: 2024-10-27.

SIGWEB Newsletter Autumn 2024



8 · Carson Gross et al.

MAYER, M. 2010. Search: now faster than the speed of type. https://googleblog.blogspot.com/
2010/09/search-now-faster-than-speed-of-type.html. Accessed: 2024-10-30.

NELSON, T. H. 1995. The heart of connection: hypermedia unified by transclusion. Communications of the
ACM 38, 8, 31–33.

WALKER, J. 2005. Feral hypertext: When hypertext literature escapes control. In Proceedings of the Sixteenth
ACM Conference on Hypertext and Hypermedia. HYPERTEXT ’05. Association for Computing Machinery,
New York, NY, USA, 46–53.

WORLDMETRICS.ORG. 2024. JavaScript statistics reveal dominance in websites, job market, and more. https:
//worldmetrics.org/javascript-statistics/. Accessed: 2024-10-26.

YEO, J., RIM, J.-H., SHIN, C., AND MOON, S.-M. 2020. Accelerating web start-up with resource preloading.
In Web Engineering, M. Bielikova, T. Mikkonen, and C. Pautasso, Eds. Springer International Publishing,
Cham, 37–52.

Carson Gross is a lecturer and PhD student at Montana State University and is the founder of the HyperMedia
Research Group. Their latest publication is entitled “Hypermedia Controls: Feral to Formal” and has been
published in Proceedings of the 35th ACM Conference on Hypertext and Social Media.

Matthew Revelle is an assistant professor of Computer Science at Montana State University. His research in-
terests include the use of formal methods and machine learning for discovering and reasoning over software
vulnerabilities and the design of software systems.

SIGWEB Newsletter Autumn 2024


